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Abstract

This paper proposes a new method to divide a pool of samples into calibration and validation subsets for multivariate modelling. The
proposed method is of value for analytical applications involving complex matrices, in which the composition variability of real samples
cannot be easily reproduced by optimized experimental designs. A stepwise procedure is employed to select samples according to the
differences in bothx (instrumental responses) agdpredicted parameter) spaces. The proposed technique is illustrated in a case study
involving the prediction of three quality parameters (specific mass and distillation temperatures at which 10 and 90% of the sample haxs
evaporated) of diesel by NIR spectrometry and PLS modelling. For comparison, PLS models are also constructed by full cross-validation, a:
well as by using the Kennard—Stone and random sampling methods for calibration and validation subset partitioning. The obtained models ar
compared in terms of prediction performance by employing an independent set of samples not used for calibration or validation. The result:
of F-tests at 95% confidence level reveal that the proposed technique may be an advantageous alternative to the other three strategies.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction Several works have addressed the problem of selecting
a representative subset from a large pool of sam[fleq].

In multivariate calibration problems involving complex In this context, random sampling (RS) is a popular technique
matrices, it can be difficult to reproduce the composition vari- because of its simplicity and also because a group of data ran-
ability of real samples by means of optimized experimental domly extracted from a larger set follows the statistical distri-
designg1]. A typical example consists of fuel analysis for bution of the entire set. However, RS does not guarantee the
the determination of quality parameters such as octane num+epresentativity of the set, nor does it prevent extrapolation
ber, cetane index, sulphur content, distillation temperatures,problems[10]. In fact, RS does not ensure that the samples
flash point, freezing point, percentage of aromatics and spe-on the boundaries of the set are included in the calibration.
cific mass to name only a fey2—4]. In such cases, a rep- An alternative to RS that is often employed is the
resentative calibration set must be extracted from a pool of Kennard—Stone (KS) algorithm. KS is aimed at covering the
real samples. Moreover, validation samples should also bemultidimensional space in a uniform manner by maximizing
selected to assess the quality of the model and to determinghe Euclidean distances between the instrumental response
model parameters such as the number of latent variables invectors (x) of the selected samplgs-12]. In a neural net-
PLS regressiofb]. work classification study by Wu et 9], KS was found

to be superior to RS, as well as to Kohonen self-organizing

mapping[13]. The study also showed that KS leads to clas-
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It is worth noting that the specific problem of partition- square errors calculated in prediction sets not included in the
ing a pool of real samples into calibration and validation modelling procedures. For the purpose of ensuring the inde-
sets for multivariate calibration purposes has not been ex-pendence of such sets, the prediction samples are randomly
tensively explored in the literature. Kanduc et [@l0] ad- extracted from the initial pool of experimental data, before
dressed this problem in a case study involving the prediction the calibration/validation partitioning procedures. In order to
of colour properties of a titanium dioxide white pigmentfrom improve the robustness of the error statistics, the study is re-
other physical and chemical parameters. The study involved peated five times by resampling the prediction set. The three
the comparison of RS, KS, Kohonen self-organizing map- strategies (PLS-SPXY, PLS-KS, and PLS-RS) are also com-
ping and time-dependent sampling. The models obtained inpared with PLS employing full cross-validation (PLS-CV).
this manner were compared in terms of their generalization
performance in a third prediction set not employed in the
modelling procedures. The results revealed that the best pre2. Background and theory
dictions were achieved by using KS. However, it should be )
noticed that the choice of the prediction set was not entirely 2-1- KS algorithm
unbiased in that the prediction samples were extracted from . : - .

A Lo A . The classic KS algorithm is aimed at selecting a represen-
the validation set after the calibration/validation partitioning tative subset from a pool & samples. In order to ensure a
had already been performed. Moreover, the authors empha- " Setiromap Pies. )
. . s . uniform distribution of such a subset along thénstrumen-
size that an investigation of this problem on a case-by-case . .
L tal response) data space, KS follows a stepwise procedure in
basis is always recommended. . . . .
) ; which new selections are taken in regions of the space far

Despite the comparative advantages of KS over the alter- .

. e . . from the samples already selected. For this purpose, the al-
native partitioning methods cited above, a shortcoming of KS . . .

. s - o gorithm employs the Euclidean distanaggp, q) between

in the multivariate calibration context lies in the fact that the thex-vectors of each pair (m) of samples calculated as
statistics of the dependent variable (y) are not taken into ac- pair {m P

count. It could be argued that the inclusionyeihformation 7

in the selectipn process might.result ina more effgctive distri- 4, (p, q) = Z [x ,(j) — xq(j)]z; p.gell, N] 1)
bution of calibration samples in the multidimensional space,
thus improving the predictive ability and robustness of the ) ) )
resulting model. For spectral datasp(j) and Xq(j) are the instrumental re-

In the work of Dantas Filho et a14], an approach for ~ SPonses at thith wavelength for samples andq, respec-
considering joink—y statistics in the selection of calibration ~ tively. J denotes the number of wavelengths in the spectra.
samples was proposed for the purpose of total sulphur deter-  The selection starts by taking the paig (pz) of samples
mination in diesel samples by NIR spectrometry. However, for whichthe distancel(py, p2) is the largest. At each subse-
such an approach was aimed at extracting a reduced subsefuent iteration, the algorithm selects the sample that exhibits
from the pool of calibration samples, rather than partitioning the largest minimum distance with respect to any sample al-
the available data into calibration and validation. In fact, the réady selected. Such a procedure is repeated until the number
analyst was required to provide the calibration and validation ©f samples specified by the analyst is achieved.
sets as a starting point for the sample selection procedure. For .
this purpose, the calibration/validation partitioning was car- 2.2. Proposed SPXY algorithm
ried out in a qualitative manner on the basis of a univariate _ _
inspection of the reference parameter values followed by an ~ The proposal of the present paper consists of augmenting
analysis of the residual andy-variance in the PLS regres- thedistance defined in E(l)with a distance inthe dependent
sion. variable (y) space for the parameter under consideration. Such

In the present paper, a method for calibration/validation @ distancel,(p, g) can be calculated for each pair of samples
partitioning is proposed to take into account the variability in P andgas

both x andy dimensions. The method, termed SPXY (Sam- 5
ple set Partitioning based on joixtydistances), extends the  dy(p, @) =\/(vp = Y9)* = lyp —¥ql; P.q€[L,N] (2)
KS algorithm by encompassing bathandy-differences in

the calculation of inter-sample distances. For illustration, a . .
o o . ; the samples in theandy spaces, distancelg(p, ) anddy(p,
multivariate calibration problem involving NIR spectromet- - : ; )
q) are divided by their maximum values in the data set. In

ric analysis of diesel samples is considered. Three quality ,,’. . X .
: o > this manner, a normalized/ distance is calculated as
parameters are determined, namely specific mass and the dis-
dx(p. q)

tillation temperatures at which 10 and 90% of the sample hasd (p. ) =
evaporated (T10 and T90%). SPXY is compared with KS “* %= may " 0" (. q)
and RS for the division of modelling data into calibration d

and validation sets for PLS regression. The performances of + G :
the resulting models are compared in terms of root-mean- maX,,q e [1.8] dy(P: 9)

j=1

In order to assign equal importance to the distribution of

p.g€[l,N] (3)
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A stepwise selection procedure similartothe KS algorithm the three selection methods to be compared (RS, KS, and

can then be applied wittky(p, q) instead oflx(p, q) alone.
The Matlab code for implementation of the proposed
SPXY algorithm can be found iAppendix A.

3. Experimental

3.1. Samples

SPXY).

In order to improve the statistical significance of the com-
parison, the extraction of the prediction set and the subse-
guent partitioning of the remaining samples into calibration
and validation by RS, KS, and SPXY was repeated five times.
In this manner, the four modelling strategies (PLS-RS, PLS-
KS, PLS-SPXY, and PLS-CV) were tested with five different
prediction sets.

Because of the random nature of the RS method, spe-

The data set consisted of 170 diesel samples that werecial care was taken to improve the statistical significance
collected from gas stations in the city of Recife (Pernambuco of the PLS-RS results. For this purpose, five RS calibra-

State, Brazil) and stored in ambar glass flasks.

3.2. Reference methods and apparatus

tion/validation partitions were performed for each of the five
extractions of the prediction set. In this mannex 5=25
evaluations of PLS-RS were carried out.

For each diesel quality parameter, the predictive ability of

The reference values for specific mass and distillation tem- PLS-RS, PLS-KS, PLS-SPXY, and PLS-CV were compared

peratures (T10 and T90%) were obtained according to thein terms of an overall root-mean-square error of prediction
ASTM (American Society for Testing and Materials) 4615 (RMSEP). Such an RMSEP statistic was defined for PLS-KS,
and D86 methods, respectively. PLS-SPXY, and PLS-CV as

Specific mass and distillation temperatures were deter-

mined by using a Kyoto Electronics DA-130 digital densime-
ter, and a Herzog HDA 628 automatic distiller, respectively,

which were operated according to the recommendations of

the manufacturers for optimal working conditions.

3.3. NIR spectra acquisition and pre-processing

The spectrawere acquired using a FT-NIR/MIR spectrom-

eter Perkin Elmer GX with a spectral resolution of 2¢m

16 scans and an optical path length of 1.0 cm. Only the NIR

I M
1 “
RMSEP= m Z Z(yi,m - yi,m)2 (4)

i=1m=1

wherey;m and y; ,, are the reference and predicted values
of the parameter under consideration in théh prediction
sample (n¥1,..., M) of the ith prediction set &1, .. ., I).

As explained abovevl =50, and =5 were employed in this
work. The RMSEP calculation for PLS-RS also embodied
the RS repetitions as

o . I K M
region in the range 885-1600 nm was exploited, because at 1 . 2
shorter wavelengths (<885 nm) the signal is too close to the MSEP= I - K-M Z Z Z(yi’k’m = Jikm)= ()
baseline, whereas above 1600 nm the signal saturates the i=1 k=lm=1

detector. In order to circumvent the problem of systematic where indexk=1, ..., K refers to each of the five (K5)

variations in the baseline, derivative spectra were calculatedcalibration/validation divisions by RS.

with a Savitzky—Golay filter using a 2nd-order polynomial

The statistical significance of differences between RM-

and a 11-point window. Each resulting spectrum had 1431 SEP values were assessed by using-&est for a confidence

variables.

3.4. Software

Spectrum derivation and PLS modelling were performed

with The Unscrambler 7.5 software (CAMO). By using the

level of 95%. It is worth noting that the RMSEP calculation
for PLS-RS involves five times more degrees of freedom than
the respective calculation for each other modelling strategy
(PLS-KS, PLS-SPXY, and PLS-CV).

default settings of the software package, the number of latent4. Results and discussion

variables in the PLS model was determined either by testing

on the validation set (PLS-RS, PLS-KS, PLS-SPXY) or by
full cross-validation (PLS-CV).

RS, KS, and SPXY routines were implemented in Mat-
lab 6.1. The division of the 170 samples into calibration,

The original spectra of the 170 diesel samples analyzed by
NIR spectrometry are presentedriy. 1a. Such spectra dis-
play baseline features that were corrected by derivation with
a Savitzky—Golay filtef=ig. 1b shows the resulting derivative

validation, and prediction sets was carried out in the fol- spectra, which were employed throughout the work.

lowing manner. Initially, 50 prediction samples were ex-

Table 1presents the RMSEP results of the four modelling

tracted from the full set in a random manner to simulate strategies for each parameter under study.

the analysis of a batch of real unknown samples. The re-

Asregards the comparison of PLS-KS, PLS-RS, and PLS-

maining 120 samples were divided into calibration and val- CV performances, it can be seen that PLS-CV yielded the
idation sets of 70 and 50 elements, respectively, by using smallest RMSEP for specific mass, whereas PLS-RS yielded
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Table 1

RMSEP results obtained for each modelling strategy

Parameter PLS-KS PLS-RS PLS-CV PLS-SPXY
Specific mass (830-864 kg) 1.8 1.8 1.6 1.7

T10% (186.6—269.9C) 5.5 54 55 5.3

T90% (317.2-385.5C) 4.7 4.4 4.5 4.0

The range of each parameter in the data set is indicated in parenthesis.

culations, is considerably more demanding in computational

% terms.
§ SPXY was successfully employed with PLS regression for
8 NIR spectrometric determination of specific mass and T10,
§ and T90% distillation temperatures in diesel samples. The
< ol : . . . . . ] results showed that the proposed method may be an advan-
900 1000 1100 1200 1300 1400 1500 1600 tageous alternative to divide modelling data into calibration
0.02 and validation sets for PLS regression in comparison with
' ,\ KS, RS, or full cross-validation.
001t (b / 1
g oM WMA
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(PLS-SPXY) is smaller than the corresponding values of the
other strategies in almost all cases. The only exception con-
sists of PLS-CV for specific mass, but even in this case the ) ) ]
difference with respect to PLS-SPXY is not significant at the APPendix A. Matlab implementation of the proposed
adopted confidence level (95%) of tRetest. In fact, PLS- ~ SPXY algorithm

SPXY is favoured over the other strategies in all significant
F-test comparisons (against PLS-KS, PLS-RS, and PLS-CV
in T90%).

In this Matlab function, X and y are the instrumental re-
sponse matrix (independent variables) and the column vector
of parameter values (dependent variable), respectively. Ncal
is the number of objects to be selected for the calibration set.

. The indexes of the selected objects are returned in vector m.
5. Conclusions

function m = spxy(X,y,Ncal)
This paper proposed a method to divide modelling data dminmax=zeros(1,Ncal); icializes the vector of minimum distances
into calibration and validation sets for multivariate calibra- M=size(X,1); % Number of objects
tion. The method, termed SPXY, employs a partitioning al- Samples=1:M; o _ _
ithm that tak int t th iability in both Dx = zeros(M,M); %lnicializes the matrix of X-distances
gorithm that takes _m 0 accoun e Vana‘l thty _In Dy =zeros(M,M); %lnicializes the matriz de y-distances
and y-spaces. In this manner, the multidimensional space o i=1:Mm-1
may be covered more effectively in comparison with par-  xa=X(,);
titioning schemes based arinformation alone (such asthe ~ ya=y(i.);
Kennard—Stone (KS) algorithm) or random sampling (RS). forxlb:_';é:_")’!
As a result, improvements on the prediction performance of _oe
. . yb_y(.lr')!
the resulting PLS models may be attained. Interms of compu-  py,j) = norm(xa—xb):
tational workload, SPXY is comparable with KS, in the sense Dy(i, j) = norm(ya-yb);
that both algorithms employ simple distance calculations. In  end

contrast, full cross-validation, which is often used in PLS cal- €"d



740

Dxmax = max(max(Dx));
Dymax =max(max(Dy));
D = Dx/Dxmax + Dy/Dymax; ¥Combines the X and y distances
% D is an upper triangular matrix
% D(i,j) is the distance between objects i an{ ¥ i).
[maxD,indexrow] = max(D);
% maxD is a row vector containing the largest element for each column
of D.
% indexrow is the row in which the largest element of the column if found
[dummy,indexcolumn] = max(maxD);
% index column is the column containing the largest element of
matrix D.
m(1) =indexrow(indexcolumn);
m(2) =indexcolumn;
fori=3:Ncal
pool = setdiff(samples,m);
% Pool is the index set of the samples that have not been selected yet
dmin=zeros(1,M-i+1);
% dmin will store the minimum distance of each sample in “pool” with
respect to the previously selected samples
forj=1:(M —i+1)
indexa = pool(j);
d = zeros(1,i-1);
fork=1:(i—1)
indexb =m(k);
if indexa <indexb
d(k) = D(indexa,indexb);

else
d(k) =D(indexb,indexa);
end
end
dmin(j) = min(d);
end

% At each iteration, the sample with the largest dmin value is selected
[dummy,index] = max(dmin);
m(i) = pool(index);

end
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