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Abstract

This paper proposes a new method to divide a pool of samples into calibration and validation subsets for multivariate modelling. The
proposed method is of value for analytical applications involving complex matrices, in which the composition variability of real samples
cannot be easily reproduced by optimized experimental designs. A stepwise procedure is employed to select samples according to their
differences in bothx (instrumental responses) andy (predicted parameter) spaces. The proposed technique is illustrated in a case study
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nvolving the prediction of three quality parameters (specific mass and distillation temperatures at which 10 and 90% of the s
vaporated) of diesel by NIR spectrometry and PLS modelling. For comparison, PLS models are also constructed by full cross-va
ell as by using the Kennard–Stone and random sampling methods for calibration and validation subset partitioning. The obtained
ompared in terms of prediction performance by employing an independent set of samples not used for calibration or validation.
f F-tests at 95% confidence level reveal that the proposed technique may be an advantageous alternative to the other three stra
2005 Elsevier B.V. All rights reserved.
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. Introduction

In multivariate calibration problems involving complex
atrices, it can be difficult to reproduce the composition vari-
bility of real samples by means of optimized experimental
esigns[1]. A typical example consists of fuel analysis for

he determination of quality parameters such as octane num-
er, cetane index, sulphur content, distillation temperatures,
ash point, freezing point, percentage of aromatics and spe-
ific mass to name only a few[2–4]. In such cases, a rep-
esentative calibration set must be extracted from a pool of
eal samples. Moreover, validation samples should also be
elected to assess the quality of the model and to determine
odel parameters such as the number of latent variables in
LS regression[5].

∗ Corresponding author. Tel.: +55 83 216 7438; fax: +55 83 216 7437.
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Several works have addressed the problem of sele
a representative subset from a large pool of samples[6–9].
In this context, random sampling (RS) is a popular techn
because of its simplicity and also because a group of dat
domly extracted from a larger set follows the statistical di
bution of the entire set. However, RS does not guarante
representativity of the set, nor does it prevent extrapola
problems[10]. In fact, RS does not ensure that the sam
on the boundaries of the set are included in the calibrat

An alternative to RS that is often employed is
Kennard–Stone (KS) algorithm. KS is aimed at covering
multidimensional space in a uniform manner by maximiz
the Euclidean distances between the instrumental res
vectors (x) of the selected samples[9–12]. In a neural ne
work classification study by Wu et al.[9], KS was found
to be superior to RS, as well as to Kohonen self-organ
mapping[13]. The study also showed that KS leads to c
sification results similar to those obtained by using the m
elaborate and time-consuming D-optimal design method[1].
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It is worth noting that the specific problem of partition-
ing a pool of real samples into calibration and validation
sets for multivariate calibration purposes has not been ex-
tensively explored in the literature. Kanduc et al.[10] ad-
dressed this problem in a case study involving the prediction
of colour properties of a titanium dioxide white pigment from
other physical and chemical parameters. The study involved
the comparison of RS, KS, Kohonen self-organizing map-
ping and time-dependent sampling. The models obtained in
this manner were compared in terms of their generalization
performance in a third prediction set not employed in the
modelling procedures. The results revealed that the best pre-
dictions were achieved by using KS. However, it should be
noticed that the choice of the prediction set was not entirely
unbiased in that the prediction samples were extracted from
the validation set after the calibration/validation partitioning
had already been performed. Moreover, the authors empha-
size that an investigation of this problem on a case-by-case
basis is always recommended.

Despite the comparative advantages of KS over the alter-
native partitioning methods cited above, a shortcoming of KS
in the multivariate calibration context lies in the fact that the
statistics of the dependent variable (y) are not taken into ac-
count. It could be argued that the inclusion ofy-information
in the selection process might result in a more effective distri-
bution of calibration samples in the multidimensional space,
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square errors calculated in prediction sets not included in the
modelling procedures. For the purpose of ensuring the inde-
pendence of such sets, the prediction samples are randomly
extracted from the initial pool of experimental data, before
the calibration/validation partitioning procedures. In order to
improve the robustness of the error statistics, the study is re-
peated five times by resampling the prediction set. The three
strategies (PLS-SPXY, PLS-KS, and PLS-RS) are also com-
pared with PLS employing full cross-validation (PLS-CV).

2. Background and theory

2.1. KS algorithm

The classic KS algorithm is aimed at selecting a represen-
tative subset from a pool ofN samples. In order to ensure a
uniform distribution of such a subset along thex (instrumen-
tal response) data space, KS follows a stepwise procedure in
which new selections are taken in regions of the space far
from the samples already selected. For this purpose, the al-
gorithm employs the Euclidean distancesdx(p, q) between
thex-vectors of each pair (p,q) of samples calculated as

dx(p, q) =
√√√√

J∑
[xp(j) − xq(j)]2; p, q ∈ [1, N] (1)
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In the work of Dantas Filho et al.[14], an approach fo
onsidering jointx–ystatistics in the selection of calibrati
amples was proposed for the purpose of total sulphur d
ination in diesel samples by NIR spectrometry. Howe

uch an approach was aimed at extracting a reduced s
rom the pool of calibration samples, rather than partition
he available data into calibration and validation. In fact,
nalyst was required to provide the calibration and valida
ets as a starting point for the sample selection procedur
his purpose, the calibration/validation partitioning was
ied out in a qualitative manner on the basis of a univa
nspection of the reference parameter values followed b
nalysis of the residualx andy-variance in the PLS regre
ion.

In the present paper, a method for calibration/valida
artitioning is proposed to take into account the variabilit
oth x andy dimensions. The method, termed SPXY (S
le set Partitioning based on jointx–ydistances), extends t
S algorithm by encompassing bothx- andy-differences in

he calculation of inter-sample distances. For illustratio
ultivariate calibration problem involving NIR spectrom

ic analysis of diesel samples is considered. Three qu
arameters are determined, namely specific mass and th

illation temperatures at which 10 and 90% of the sample
vaporated (T10 and T90%). SPXY is compared with
nd RS for the division of modelling data into calibrat
nd validation sets for PLS regression. The performanc

he resulting models are compared in terms of root-m
t

-

j=1

For spectral data,xp(j) andxq(j) are the instrumental re
ponses at thejth wavelength for samplesp andq, respec
ively. J denotes the number of wavelengths in the spec

The selection starts by taking the pair (p1, p2) of samples
or which the distancedx(p1,p2) is the largest. At each subs
uent iteration, the algorithm selects the sample that exh

he largest minimum distance with respect to any samp
eady selected. Such a procedure is repeated until the nu
f samples specified by the analyst is achieved.

.2. Proposed SPXY algorithm

The proposal of the present paper consists of augme
he distance defined in Eq.(1)with a distance in the depende
ariable (y) space for the parameter under consideration.
distancedy(p,q) can be calculated for each pair of samp
andq as

y(p, q) =
√

(yp − yq)2 = |yp − yq|; p, q ∈ [1, N] (2)

In order to assign equal importance to the distributio
he samples in thex andyspaces, distancesdx(p,q) anddy(p,
) are divided by their maximum values in the data se

his manner, a normalizedxy distance is calculated as

xy(p, q) = dx(p, q)

maxp,q ∈ [1,N] dx(p, q)

+ dy(p, q)

maxp,q ∈ [1,N] dy(p, q)
; p, q ∈ [1, N] (3)
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A stepwise selection procedure similar to the KS algorithm
can then be applied withdxy(p,q) instead ofdx(p,q) alone.

The Matlab code for implementation of the proposed
SPXY algorithm can be found inAppendix A.

3. Experimental

3.1. Samples

The data set consisted of 170 diesel samples that were
collected from gas stations in the city of Recife (Pernambuco
State, Brazil) and stored in ambar glass flasks.

3.2. Reference methods and apparatus

The reference values for specific mass and distillation tem-
peratures (T10 and T90%) were obtained according to the
ASTM (American Society for Testing and Materials) 4615
and D86 methods, respectively.

Specific mass and distillation temperatures were deter-
mined by using a Kyoto Electronics DA-130 digital densime-
ter, and a Herzog HDA 628 automatic distiller, respectively,
which were operated according to the recommendations of
the manufacturers for optimal working conditions.
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the three selection methods to be compared (RS, KS, and
SPXY).

In order to improve the statistical significance of the com-
parison, the extraction of the prediction set and the subse-
quent partitioning of the remaining samples into calibration
and validation by RS, KS, and SPXY was repeated five times.
In this manner, the four modelling strategies (PLS-RS, PLS-
KS, PLS-SPXY, and PLS-CV) were tested with five different
prediction sets.

Because of the random nature of the RS method, spe-
cial care was taken to improve the statistical significance
of the PLS-RS results. For this purpose, five RS calibra-
tion/validation partitions were performed for each of the five
extractions of the prediction set. In this manner, 5× 5 = 25
evaluations of PLS-RS were carried out.

For each diesel quality parameter, the predictive ability of
PLS-RS, PLS-KS, PLS-SPXY, and PLS-CV were compared
in terms of an overall root-mean-square error of prediction
(RMSEP). Such an RMSEP statistic was defined for PLS-KS,
PLS-SPXY, and PLS-CV as

RMSEP=
√√√√ 1

I · M

I∑
i=1

M∑
m=1

(yi,m − ŷi,m)2 (4)

whereyi,m and ŷi,m are the reference and predicted values
of the parameter under consideration in themth prediction
s
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.3. NIR spectra acquisition and pre-processing

The spectra were acquired using a FT-NIR/MIR spectr
ter Perkin Elmer GX with a spectral resolution of 2 cm−1,
6 scans and an optical path length of 1.0 cm. Only the
egion in the range 885–1600 nm was exploited, becau
horter wavelengths (<885 nm) the signal is too close t
aseline, whereas above 1600 nm the signal saturate
etector. In order to circumvent the problem of system
ariations in the baseline, derivative spectra were calcu
ith a Savitzky–Golay filter using a 2nd-order polynom
nd a 11-point window. Each resulting spectrum had 1
ariables.

.4. Software

Spectrum derivation and PLS modelling were perfor
ith The Unscrambler 7.5 software (CAMO). By using
efault settings of the software package, the number of l
ariables in the PLS model was determined either by te
n the validation set (PLS-RS, PLS-KS, PLS-SPXY) o

ull cross-validation (PLS-CV).
RS, KS, and SPXY routines were implemented in M

ab 6.1. The division of the 170 samples into calibrat
alidation, and prediction sets was carried out in the
owing manner. Initially, 50 prediction samples were
racted from the full set in a random manner to simu
he analysis of a batch of real unknown samples. Th
aining 120 samples were divided into calibration and

dation sets of 70 and 50 elements, respectively, by u
ample (m= 1, . . ., M) of the ith prediction set (i= 1, . . ., I).
s explained above,M= 50, andI = 5 were employed in th
ork. The RMSEP calculation for PLS-RS also embod

he RS repetitions as

MSEP=
√√√√ 1

I · K · M

I∑
i=1

K∑
k=1

M∑
m=1

(yi,k,m − ŷi,k,m)2 (5)

here indexk= 1, . . ., K refers to each of the five (K= 5)
alibration/validation divisions by RS.

The statistical significance of differences between R
EP values were assessed by using anF-test for a confidenc

evel of 95%. It is worth noting that the RMSEP calculat
or PLS-RS involves five times more degrees of freedom
he respective calculation for each other modelling stra
PLS-KS, PLS-SPXY, and PLS-CV).

. Results and discussion

The original spectra of the 170 diesel samples analyze
IR spectrometry are presented inFig. 1a. Such spectra d
lay baseline features that were corrected by derivation
Savitzky–Golay filter.Fig. 1b shows the resulting derivat
pectra, which were employed throughout the work.

Table 1presents the RMSEP results of the four model
trategies for each parameter under study.

As regards the comparison of PLS-KS, PLS-RS, and P
V performances, it can be seen that PLS-CV yielded
mallest RMSEP for specific mass, whereas PLS-RS yie
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Table 1
RMSEP results obtained for each modelling strategy

Parameter PLS-KS PLS-RS PLS-CV PLS-SPXY

Specific mass (830–864 kg m−3) 1.8 1.8 1.6 1.7
T10% (186.6–269.9◦C) 5.5 5.4 5.5 5.3
T90% (317.2–385.5◦C) 4.7 4.4 4.5 4.0

The range of each parameter in the data set is indicated in parenthesis.

Fig. 1. Original (a) and derivative (b) NIR spectra of the 170 diesel
samples.

the smallest RMSEP for T10 and T90%. However, theF-test
reveals that the only significant differences favour PLS-CV
over the other two strategies for specific mass.

On the other hand, the RMSEP of the proposed technique
(PLS-SPXY) is smaller than the corresponding values of the
other strategies in almost all cases. The only exception con-
sists of PLS-CV for specific mass, but even in this case the
difference with respect to PLS-SPXY is not significant at the
adopted confidence level (95%) of theF-test. In fact, PLS-
SPXY is favoured over the other strategies in all significant
F-test comparisons (against PLS-KS, PLS-RS, and PLS-CV
in T90%).

5. Conclusions

This paper proposed a method to divide modelling data
into calibration and validation sets for multivariate calibra-
tion. The method, termed SPXY, employs a partitioning al-
gorithm that takes into account the variability in bothx-
and y-spaces. In this manner, the multidimensional space
may be covered more effectively in comparison with par-
titioning schemes based onx-information alone (such as the
Kennard–Stone (KS) algorithm) or random sampling (RS).
As a result, improvements on the prediction performance of
the resulting PLS models may be attained. In terms of compu-
t nse
t s. In
c cal-

culations, is considerably more demanding in computational
terms.

SPXY was successfully employed with PLS regression for
NIR spectrometric determination of specific mass and T10,
and T90% distillation temperatures in diesel samples. The
results showed that the proposed method may be an advan-
tageous alternative to divide modelling data into calibration
and validation sets for PLS regression in comparison with
KS, RS, or full cross-validation.
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hat both algorithms employ simple distance calculation
ontrast, full cross-validation, which is often used in PLS
ppendix A. Matlab implementation of the proposed
PXY algorithm

In this Matlab function, X and y are the instrumental
ponse matrix (independent variables) and the column v
f parameter values (dependent variable), respectively.

s the number of objects to be selected for the calibration
he indexes of the selected objects are returned in vect

unction m = spxy(X,y,Ncal)
minmax = zeros(1,Ncal); %Inicializes the vector of minimum distances.
= size(X,1); % Number of objects

amples = 1:M;
x = zeros(M,M); %Inicializes the matrix of X-distances.
y = zeros(M,M); %Inicializes the matriz de y-distances.

or i = 1:M-1
xa = X(i,:);
ya = y(i,:);
for j = i + 1:M

xb = X(j,:);
yb = y(j,:);
Dx(i, j) = norm(xa–xb);
Dy(i, j) = norm(ya–yb);

end
nd
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Dxmax = max(max(Dx));
Dymax = max(max(Dy));
D = Dx/Dxmax + Dy/Dymax; %Combines the X and y distances.
%D is an upper triangular matrix.
%D(i,j) is the distance between objects i and j(j > i).
[maxD,indexrow] = max(D);
%maxD is a row vector containing the largest element for each column

of D.
% index row is the row in which the largest element of the column if found.
[dummy,indexcolumn] = max(maxD);
% indexcolumn is the column containing the largest element of
matrix D.

m(1) = indexrow(indexcolumn);
m(2) = indexcolumn;
for i = 3:Ncal

pool = setdiff(samples,m);
%Pool is the index set of the samples that have not been selected yet.
dmin = zeros(1,M− i + 1);
% dmin will store the minimum distance of each sample in “pool” with
respect to the previously selected samples.
for j = 1:(M − i + 1)

indexa = pool(j);
d = zeros(1,i-1);
for k = 1:(i− 1)

indexb = m(k);
if indexa < indexb

d(k) = D(indexa,indexb);
else

d(k) = D(indexb,indexa);
end

ted

e
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dmin(j) = min(d);
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[dummy,index] = max(dmin);
m(i) = pool(index);
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